top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Finite elements III : first-order and time-dependent PDEs / / Alexandre Ern, Jean-Luc Guermond
Finite elements III : first-order and time-dependent PDEs / / Alexandre Ern, Jean-Luc Guermond
Autore Ern Alexandre <1967->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (417 pages)
Disciplina 515
Collana Texts in Applied Mathematics
Soggetto topico Calculus
Functional analysis
Functions
Harmonic analysis
Mathematical analysis
Mètode dels elements finits
Equacions en derivades parcials
Soggetto genere / forma Llibres electrònics
ISBN 3-030-57348-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Part XII First-order PDEs -- 56 Friedrichs' systems -- 56.1 Basic ideas -- 56.1.1 The fields mathcalK and mathcalAk -- 56.1.2 Integration by parts -- 56.1.3 The model problem -- 56.2 Examples -- 56.2.1 Advection-reaction equation -- 56.2.2 Darcy's equations -- 56.2.3 Maxwell's equations -- 56.3 Weak formulation and well-posedness -- 56.3.1 Minimal domain, maximal domain, and graph space -- 56.3.2 The boundary operators N and M -- 56.3.3 Well-posedness -- 56.3.4 Examples -- 57 Residual-based stabilization -- 57.1 Model problem -- 57.2 Least-squares (LS) approximation -- 57.2.1 Weak problem -- 57.2.2 Finite element setting -- 57.2.3 Error analysis -- 57.3 Galerkin/least-squares (GaLS) -- 57.3.1 Local mesh-dependent weights -- 57.3.2 Discrete problem and error analysis -- 57.3.3 Scaling -- 57.3.4 Examples -- 57.4 Boundary penalty for Friedrichs' systems -- 57.4.1 Model problem -- 57.4.2 Boundary penalty method -- 57.4.3 GaLS stabilization with boundary penalty -- 58 Fluctuation-based stabilization (I) -- 58.1 Discrete setting -- 58.2 Stability analysis -- 58.3 Continuous interior penalty -- 58.3.1 Design of the CIP stabilization -- 58.3.2 Error analysis -- 58.4 Examples -- 59 Fluctuation-based stabilization (II) -- 59.1 Two-scale decomposition -- 59.2 Local projection stabilization -- 59.3 Subgrid viscosity -- 59.4 Error analysis -- 59.5 Examples -- 60 Discontinuous Galerkin -- 60.1 Discrete setting -- 60.2 Centered fluxes -- 60.2.1 Local and global formulation -- 60.2.2 Error analysis -- 60.2.3 Examples -- 60.3 Tightened stability by jump penalty -- 60.3.1 Local and global formulation -- 60.3.2 Error analysis -- 60.3.3 Examples -- 61 Advection-diffusion -- 61.1 Model problem -- 61.2 Discrete setting -- 61.3 Stability and error analysis -- 61.3.1 Stability and well-posedness -- 61.3.2 Consistency/boundedness.
61.3.3 Error estimates -- 61.4 Divergence-free advection -- 62 Stokes equations: Residual-based stabilization -- 62.1 Model problem -- 62.2 Discrete setting for GaLS stabilization -- 62.3 Stability and well-posedness -- 62.4 Error analysis -- 63 Stokes equations: Other stabilizations -- 63.1 Continuous interior penalty -- 63.1.1 Discrete setting -- 63.1.2 Stability and well-posedness -- 63.1.3 Error analysis -- 63.2 Discontinuous Galerkin -- 63.2.1 Discrete setting -- 63.2.2 Stability and well-posedness -- 63.2.3 Error analysis -- Part XIII Parabolic PDEs -- 64 Bochner integration -- 64.1 Bochner integral -- 64.1.1 Strong measurability and Bochner integrability -- 64.1.2 Main properties -- 64.2 Weak time derivative -- 64.2.1 Strong and weak time derivatives -- 64.2.2 Functional spaces with weak time derivative -- 65 Weak formulation and well-posedness -- 65.1 Weak formulation -- 65.1.1 Heuristic argument for the heat equation -- 65.1.2 Abstract parabolic problem -- 65.1.3 Weak formulation -- 65.1.4 Example: the heat equation -- 65.1.5 Ultraweak formulation -- 65.2 Well-posedness -- 65.2.1 Uniqueness using a coercivity-like argument -- 65.2.2 Existence using a constructive argument -- 65.3 Maximum principle for the heat equation -- 66 Semi-discretization in space -- 66.1 Model problem -- 66.2 Principle and algebraic realization -- 66.3 Error analysis -- 66.3.1 Error equation -- 66.3.2 Basic error estimates -- 66.3.3 Application to the heat equation -- 66.3.4 Extension to time-varying diffusion -- 67 Implicit and explicit Euler schemes -- 67.1 Implicit Euler scheme -- 67.1.1 Time mesh -- 67.1.2 Principle and algebraic realization -- 67.1.3 Stability -- 67.1.4 Error analysis -- 67.1.5 Application to the heat equation -- 67.2 Explicit Euler scheme -- 67.2.1 Principle and algebraic realization -- 67.2.2 Stability -- 67.2.3 Error analysis.
68 BDF2 and Crank-Nicolson schemes -- 68.1 Discrete setting -- 68.2 BDF2 scheme -- 68.2.1 Principle and algebraic realization -- 68.2.2 Stability -- 68.2.3 Error analysis -- 68.3 Crank-Nicolson scheme -- 68.3.1 Principle and algebraic realization -- 68.3.2 Stability -- 68.3.3 Error analysis -- 69 Discontinuous Galerkin in time -- 69.1 Setting for the time discretization -- 69.2 Formulation of the method -- 69.2.1 Quadratures and interpolation -- 69.2.2 Discretization in time -- 69.2.3 Reformulation using a time reconstruction operator -- 69.2.4 Equivalence with Radau IIA IRK -- 69.3 Stability and error analysis -- 69.3.1 Stability -- 69.3.2 Error analysis -- 69.4 Algebraic realization -- 69.4.1 IRK implementation -- 69.4.2 General case -- 70 Continuous Petrov-Galerkin in time -- 70.1 Formulation of the method -- 70.1.1 Quadratures and interpolation -- 70.1.2 Discretization in time -- 70.1.3 Equivalence with Kuntzmann-Butcher IRK -- 70.1.4 Collocation schemes -- 70.2 Stability and error analysis -- 70.2.1 Stability -- 70.2.2 Error analysis -- 70.3 Algebraic realization -- 70.3.1 IRK implementation -- 70.3.2 General case -- 71 Analysis using inf-sup stability -- 71.1 Well-posedness -- 71.1.1 Functional setting -- 71.1.2 Boundedness and inf-sup stability -- 71.1.3 Another proof of Lions' theorem -- 71.1.4 Ultraweak formulation -- 71.2 Semi-discretization in space -- 71.2.1 Mesh-dependent inf-sup stability -- 71.2.2 Inf-sup stability in the X-norm -- 71.3 dG(k) scheme -- 71.4 cPG(k) scheme -- Part XIV Time-dependent Stokes equations -- 72 Weak formulations and well-posedness -- 72.1 Model problem -- 72.2 Constrained weak formulation -- 72.3 Mixed weak formulation with smooth data -- 72.4 Mixed weak formulation with rough data -- 73 Monolithic time discretization -- 73.1 Model problem -- 73.2 Space semi-discretization -- 73.2.1 Discrete formulation.
73.2.2 Error equations and approximation operators -- 73.2.3 Error analysis -- 73.3 Implicit Euler approximation -- 73.3.1 Discrete formulation -- 73.3.2 Algebraic realization and preconditioning -- 73.3.3 Error analysis -- 73.4 Higher-order time approximation -- 74 Projection methods -- 74.1 Model problem and Helmholtz decomposition -- 74.2 Pressure correction in standard form -- 74.2.1 Formulation of the method -- 74.2.2 Stability and convergence properties -- 74.3 Pressure correction in rotational form -- 74.3.1 Formulation of the method -- 74.3.2 Stability and convergence properties -- 74.4 Finite element approximation -- 75 Artificial compressibility -- 75.1 Stability under compressibility perturbation -- 75.2 First-order artificial compressibility -- 75.3 Higher-order artificial compressibility -- 75.4 Finite element implementation -- Part XV Time-dependent first-order linear PDEs -- 76 Well-posedness and space semi-discretization -- 76.1 Maximal monotone operators -- 76.2 Well-posedness -- 76.3 Time-dependent Friedrichs' systems -- 76.4 Space semi-discretization -- 76.4.1 Discrete setting -- 76.4.2 Discrete problem and well-posedness -- 76.4.3 Error analysis -- 77 Implicit time discretization -- 77.1 Model problem and space discretization -- 77.1.1 Model problem -- 77.1.2 Setting for the space discretization -- 77.2 Implicit Euler scheme -- 77.2.1 Time discrete setting and algebraic realization -- 77.2.2 Stability -- 77.3 Error analysis -- 77.3.1 Approximation in space -- 77.3.2 Error estimate in the L-norm -- 77.3.3 Error estimate in the graph norm -- 78 Explicit time discretization -- 78.1 Explicit Runge-Kutta (ERK) schemes -- 78.1.1 Butcher tableau -- 78.1.2 Examples -- 78.1.3 Order conditions -- 78.2 Explicit Euler scheme -- 78.3 Second-order two-stage ERK schemes -- 78.4 Third-order three-stage ERK schemes.
Part XVI Nonlinear hyperbolic PDEs -- 79 Scalar conservation equations -- 79.1 Weak and entropy solutions -- 79.1.1 The model problem -- 79.1.2 Short-time existence and loss of smoothness -- 79.1.3 Weak solutions -- 79.1.4 Existence and uniqueness -- 79.2 Riemann problem -- 79.2.1 One-dimensional Riemann problem -- 79.2.2 Convex or concave flux -- 79.2.3 General case -- 79.2.4 Riemann cone and averages -- 79.2.5 Multidimensional flux -- 80 Hyperbolic systems -- 80.1 Weak solutions and examples -- 80.1.1 First-order quasilinear hyperbolic systems -- 80.1.2 Hyperbolic systems in conservative form -- 80.1.3 Examples -- 80.2 Riemann problem -- 80.2.1 Expansion wave, contact discontinuity, and shock -- 80.2.2 Maximum speed and averages -- 80.2.3 Invariant sets -- 81 First-order approximation -- 81.1 Scalar conservation equations -- 81.1.1 The finite element space -- 81.1.2 The scheme -- 81.1.3 Maximum principle -- 81.1.4 Entropy inequalities -- 81.2 Hyperbolic systems -- 81.2.1 The finite element space -- 81.2.2 The scheme -- 81.2.3 Upper bounds on λmax -- 82 Higher-order approximation -- 82.1 Higher order in time -- 82.1.1 Key ideas -- 82.1.2 Examples -- 82.1.3 Butcher tableau versus (α-β) representation -- 82.2 Higher order in space for scalar equations -- 82.2.1 Heuristic motivation and preliminary result -- 82.2.2 Smoothness-based graph viscosity -- 82.2.3 Greedy graph viscosity -- 83 Higher-order approximation and limiting -- 83.1 Higher-order techniques -- 83.1.1 Diminishing the graph viscosity -- 83.1.2 Dispersion correction: consistent mass matrix -- 83.2 Limiting -- 83.2.1 Key principles -- 83.2.2 Conservative algebraic formulation -- 83.2.3 Boris-Book-Zalesak's limiting for scalar equations -- 83.2.4 Convex limiting for hyperbolic systems -- References -- Index.
Altri titoli varianti Finite elements 3
Finite elements three
Record Nr. UNISA-996466550903316
Ern Alexandre <1967->  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Finite elements III : first-order and time-dependent PDEs / / Alexandre Ern, Jean-Luc Guermond
Finite elements III : first-order and time-dependent PDEs / / Alexandre Ern, Jean-Luc Guermond
Autore Ern Alexandre <1967->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (417 pages)
Disciplina 515
Collana Texts in Applied Mathematics
Soggetto topico Calculus
Functional analysis
Functions
Harmonic analysis
Mathematical analysis
Mètode dels elements finits
Equacions en derivades parcials
Soggetto genere / forma Llibres electrònics
ISBN 3-030-57348-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Contents -- Part XII First-order PDEs -- 56 Friedrichs' systems -- 56.1 Basic ideas -- 56.1.1 The fields mathcalK and mathcalAk -- 56.1.2 Integration by parts -- 56.1.3 The model problem -- 56.2 Examples -- 56.2.1 Advection-reaction equation -- 56.2.2 Darcy's equations -- 56.2.3 Maxwell's equations -- 56.3 Weak formulation and well-posedness -- 56.3.1 Minimal domain, maximal domain, and graph space -- 56.3.2 The boundary operators N and M -- 56.3.3 Well-posedness -- 56.3.4 Examples -- 57 Residual-based stabilization -- 57.1 Model problem -- 57.2 Least-squares (LS) approximation -- 57.2.1 Weak problem -- 57.2.2 Finite element setting -- 57.2.3 Error analysis -- 57.3 Galerkin/least-squares (GaLS) -- 57.3.1 Local mesh-dependent weights -- 57.3.2 Discrete problem and error analysis -- 57.3.3 Scaling -- 57.3.4 Examples -- 57.4 Boundary penalty for Friedrichs' systems -- 57.4.1 Model problem -- 57.4.2 Boundary penalty method -- 57.4.3 GaLS stabilization with boundary penalty -- 58 Fluctuation-based stabilization (I) -- 58.1 Discrete setting -- 58.2 Stability analysis -- 58.3 Continuous interior penalty -- 58.3.1 Design of the CIP stabilization -- 58.3.2 Error analysis -- 58.4 Examples -- 59 Fluctuation-based stabilization (II) -- 59.1 Two-scale decomposition -- 59.2 Local projection stabilization -- 59.3 Subgrid viscosity -- 59.4 Error analysis -- 59.5 Examples -- 60 Discontinuous Galerkin -- 60.1 Discrete setting -- 60.2 Centered fluxes -- 60.2.1 Local and global formulation -- 60.2.2 Error analysis -- 60.2.3 Examples -- 60.3 Tightened stability by jump penalty -- 60.3.1 Local and global formulation -- 60.3.2 Error analysis -- 60.3.3 Examples -- 61 Advection-diffusion -- 61.1 Model problem -- 61.2 Discrete setting -- 61.3 Stability and error analysis -- 61.3.1 Stability and well-posedness -- 61.3.2 Consistency/boundedness.
61.3.3 Error estimates -- 61.4 Divergence-free advection -- 62 Stokes equations: Residual-based stabilization -- 62.1 Model problem -- 62.2 Discrete setting for GaLS stabilization -- 62.3 Stability and well-posedness -- 62.4 Error analysis -- 63 Stokes equations: Other stabilizations -- 63.1 Continuous interior penalty -- 63.1.1 Discrete setting -- 63.1.2 Stability and well-posedness -- 63.1.3 Error analysis -- 63.2 Discontinuous Galerkin -- 63.2.1 Discrete setting -- 63.2.2 Stability and well-posedness -- 63.2.3 Error analysis -- Part XIII Parabolic PDEs -- 64 Bochner integration -- 64.1 Bochner integral -- 64.1.1 Strong measurability and Bochner integrability -- 64.1.2 Main properties -- 64.2 Weak time derivative -- 64.2.1 Strong and weak time derivatives -- 64.2.2 Functional spaces with weak time derivative -- 65 Weak formulation and well-posedness -- 65.1 Weak formulation -- 65.1.1 Heuristic argument for the heat equation -- 65.1.2 Abstract parabolic problem -- 65.1.3 Weak formulation -- 65.1.4 Example: the heat equation -- 65.1.5 Ultraweak formulation -- 65.2 Well-posedness -- 65.2.1 Uniqueness using a coercivity-like argument -- 65.2.2 Existence using a constructive argument -- 65.3 Maximum principle for the heat equation -- 66 Semi-discretization in space -- 66.1 Model problem -- 66.2 Principle and algebraic realization -- 66.3 Error analysis -- 66.3.1 Error equation -- 66.3.2 Basic error estimates -- 66.3.3 Application to the heat equation -- 66.3.4 Extension to time-varying diffusion -- 67 Implicit and explicit Euler schemes -- 67.1 Implicit Euler scheme -- 67.1.1 Time mesh -- 67.1.2 Principle and algebraic realization -- 67.1.3 Stability -- 67.1.4 Error analysis -- 67.1.5 Application to the heat equation -- 67.2 Explicit Euler scheme -- 67.2.1 Principle and algebraic realization -- 67.2.2 Stability -- 67.2.3 Error analysis.
68 BDF2 and Crank-Nicolson schemes -- 68.1 Discrete setting -- 68.2 BDF2 scheme -- 68.2.1 Principle and algebraic realization -- 68.2.2 Stability -- 68.2.3 Error analysis -- 68.3 Crank-Nicolson scheme -- 68.3.1 Principle and algebraic realization -- 68.3.2 Stability -- 68.3.3 Error analysis -- 69 Discontinuous Galerkin in time -- 69.1 Setting for the time discretization -- 69.2 Formulation of the method -- 69.2.1 Quadratures and interpolation -- 69.2.2 Discretization in time -- 69.2.3 Reformulation using a time reconstruction operator -- 69.2.4 Equivalence with Radau IIA IRK -- 69.3 Stability and error analysis -- 69.3.1 Stability -- 69.3.2 Error analysis -- 69.4 Algebraic realization -- 69.4.1 IRK implementation -- 69.4.2 General case -- 70 Continuous Petrov-Galerkin in time -- 70.1 Formulation of the method -- 70.1.1 Quadratures and interpolation -- 70.1.2 Discretization in time -- 70.1.3 Equivalence with Kuntzmann-Butcher IRK -- 70.1.4 Collocation schemes -- 70.2 Stability and error analysis -- 70.2.1 Stability -- 70.2.2 Error analysis -- 70.3 Algebraic realization -- 70.3.1 IRK implementation -- 70.3.2 General case -- 71 Analysis using inf-sup stability -- 71.1 Well-posedness -- 71.1.1 Functional setting -- 71.1.2 Boundedness and inf-sup stability -- 71.1.3 Another proof of Lions' theorem -- 71.1.4 Ultraweak formulation -- 71.2 Semi-discretization in space -- 71.2.1 Mesh-dependent inf-sup stability -- 71.2.2 Inf-sup stability in the X-norm -- 71.3 dG(k) scheme -- 71.4 cPG(k) scheme -- Part XIV Time-dependent Stokes equations -- 72 Weak formulations and well-posedness -- 72.1 Model problem -- 72.2 Constrained weak formulation -- 72.3 Mixed weak formulation with smooth data -- 72.4 Mixed weak formulation with rough data -- 73 Monolithic time discretization -- 73.1 Model problem -- 73.2 Space semi-discretization -- 73.2.1 Discrete formulation.
73.2.2 Error equations and approximation operators -- 73.2.3 Error analysis -- 73.3 Implicit Euler approximation -- 73.3.1 Discrete formulation -- 73.3.2 Algebraic realization and preconditioning -- 73.3.3 Error analysis -- 73.4 Higher-order time approximation -- 74 Projection methods -- 74.1 Model problem and Helmholtz decomposition -- 74.2 Pressure correction in standard form -- 74.2.1 Formulation of the method -- 74.2.2 Stability and convergence properties -- 74.3 Pressure correction in rotational form -- 74.3.1 Formulation of the method -- 74.3.2 Stability and convergence properties -- 74.4 Finite element approximation -- 75 Artificial compressibility -- 75.1 Stability under compressibility perturbation -- 75.2 First-order artificial compressibility -- 75.3 Higher-order artificial compressibility -- 75.4 Finite element implementation -- Part XV Time-dependent first-order linear PDEs -- 76 Well-posedness and space semi-discretization -- 76.1 Maximal monotone operators -- 76.2 Well-posedness -- 76.3 Time-dependent Friedrichs' systems -- 76.4 Space semi-discretization -- 76.4.1 Discrete setting -- 76.4.2 Discrete problem and well-posedness -- 76.4.3 Error analysis -- 77 Implicit time discretization -- 77.1 Model problem and space discretization -- 77.1.1 Model problem -- 77.1.2 Setting for the space discretization -- 77.2 Implicit Euler scheme -- 77.2.1 Time discrete setting and algebraic realization -- 77.2.2 Stability -- 77.3 Error analysis -- 77.3.1 Approximation in space -- 77.3.2 Error estimate in the L-norm -- 77.3.3 Error estimate in the graph norm -- 78 Explicit time discretization -- 78.1 Explicit Runge-Kutta (ERK) schemes -- 78.1.1 Butcher tableau -- 78.1.2 Examples -- 78.1.3 Order conditions -- 78.2 Explicit Euler scheme -- 78.3 Second-order two-stage ERK schemes -- 78.4 Third-order three-stage ERK schemes.
Part XVI Nonlinear hyperbolic PDEs -- 79 Scalar conservation equations -- 79.1 Weak and entropy solutions -- 79.1.1 The model problem -- 79.1.2 Short-time existence and loss of smoothness -- 79.1.3 Weak solutions -- 79.1.4 Existence and uniqueness -- 79.2 Riemann problem -- 79.2.1 One-dimensional Riemann problem -- 79.2.2 Convex or concave flux -- 79.2.3 General case -- 79.2.4 Riemann cone and averages -- 79.2.5 Multidimensional flux -- 80 Hyperbolic systems -- 80.1 Weak solutions and examples -- 80.1.1 First-order quasilinear hyperbolic systems -- 80.1.2 Hyperbolic systems in conservative form -- 80.1.3 Examples -- 80.2 Riemann problem -- 80.2.1 Expansion wave, contact discontinuity, and shock -- 80.2.2 Maximum speed and averages -- 80.2.3 Invariant sets -- 81 First-order approximation -- 81.1 Scalar conservation equations -- 81.1.1 The finite element space -- 81.1.2 The scheme -- 81.1.3 Maximum principle -- 81.1.4 Entropy inequalities -- 81.2 Hyperbolic systems -- 81.2.1 The finite element space -- 81.2.2 The scheme -- 81.2.3 Upper bounds on λmax -- 82 Higher-order approximation -- 82.1 Higher order in time -- 82.1.1 Key ideas -- 82.1.2 Examples -- 82.1.3 Butcher tableau versus (α-β) representation -- 82.2 Higher order in space for scalar equations -- 82.2.1 Heuristic motivation and preliminary result -- 82.2.2 Smoothness-based graph viscosity -- 82.2.3 Greedy graph viscosity -- 83 Higher-order approximation and limiting -- 83.1 Higher-order techniques -- 83.1.1 Diminishing the graph viscosity -- 83.1.2 Dispersion correction: consistent mass matrix -- 83.2 Limiting -- 83.2.1 Key principles -- 83.2.2 Conservative algebraic formulation -- 83.2.3 Boris-Book-Zalesak's limiting for scalar equations -- 83.2.4 Convex limiting for hyperbolic systems -- References -- Index.
Altri titoli varianti Finite elements 3
Finite elements three
Record Nr. UNINA-9910484910903321
Ern Alexandre <1967->  
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui